首页> 外文OA文献 >Scaling Algorithms for Weighted Matching in General Graphs
【2h】

Scaling Algorithms for Weighted Matching in General Graphs

机译:一般图中加权匹配的尺度算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a new scaling algorithm for maximum (or minimum) weight perfectmatching on general, edge weighted graphs. Our algorithm runs in$O(m\sqrt{n}\log(nN))$ time, $O(m\sqrt{n})$ per scale, which matches therunning time of the best cardinality matching algorithms on sparse graphs. Here$m,n,$ and $N$ bound the number of edges, vertices, and magnitude of any edgeweight. Our result improves on a 25-year old algorithm of Gabow and Tarjan,which runs in $O(m\sqrt{n\log n\alpha(m,n)} \log(nN))$ time.
机译:我们提出了一种新的缩放算法,用于在常规边缘加权图上实现最大(或最小)权重完美匹配。我们的算法以$ O(m \ sqrt {n} \ log(nN))$时间运行,每标度$ O(m \ sqrt {n})$时间运行,这与稀疏图上最佳基数匹配算法的运行时间相匹配。这里的$ m,n,$和$ N $约束了任何边权的边数,顶点数和大小。我们的结果改进了25年的Gabow和Tarjan算法,该算法在$ O(m \ sqrt {n \ log n \ alpha(m,n)} \ log(nN))$时间中运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号